Computer networks

From Wikipedia, the free encyclopedia
Jump to: navigation, search
A computer network, often simply referred to as a network, is a collection of computers and devices interconnected by communications channels that facilitate communications and allows sharing of resources and information among interconnected devices.[1] Computer networking or Data communications (Datacom) is the engineering discipline concerned with the computer networks. Computer networking is sometimes considered a sub-discipline of electrical engineering, telecommunications, computer science, information technology and/or computer engineering since it relies heavily upon the theoretical and practical application of these scientific and engineering disciplines.
The three types of networks are: the Internet, the intranet, and the extranet. Examples of different network methods are:
  • Local area network (LAN), which is usually a small network constrained to a small geographic area. An example of a LAN would be a computer network within a building.
  • Metropolitan area network (MAN), which is used for medium size area. examples for a city or a state.
  • Wide area network (WAN) that is usually a larger network that covers a large geographic area.
  • Wireless LANs and WANs (WLAN & WWAN) are the wireless equivalent of the LAN and WAN.
Networks may be classified according to a wide variety of characteristics such as topology, connection method and scale.
All networks are interconnected to allow communication with a variety of different kinds of media, including twisted-pair copper wire cable, coaxial cable, optical fiber, power lines and various wireless technologies.[2] The devices can be separated by a few meters (e.g. via Bluetooth) or nearly unlimited distances (e.g. via the interconnections of the Internet).[3] Networking, routers, routing protocols, and networking over the public Internet have their specifications defined in documents called RFCs.[4]

Contents

[hide]

History

Before the advent of computer networks that were based upon some type of telecommunications system, communication between calculation machines and early computers was performed by human users by carrying instructions between them. Many of the social behaviors seen in today's Internet were demonstrably present in the nineteenth century and arguably in even earlier networks using visual signals.
Today, computer networks are the core of modern communication. All modern aspects of the Public Switched Telephone Network (PSTN) are computer-controlled, and telephony increasingly runs over the Internet Protocol, although not necessarily the public Internet. The scope of communication has increased significantly in the past decade, and this boom in communications would not have been possible without the progressively advancing computer network. Computer networks, and the technologies needed to connect and communicate through and between them, continue to drive computer hardware, software, and peripherals industries. This expansion is mirrored by growth in the numbers and types of users of networks from the researcher to the home user.

Purpose

Computer networks can be used for a variety of purposes:
Facilitating communications 
Using a network, people can communicate efficiently and easily via email, instant messaging, chat rooms, telephone, video telephone calls, and video conferencing.
Sharing hardware 
In a networked environment, each computer on a network may access and use hardware resources on the network, such as printing a document on a shared network printer.
Sharing files, data, and information 
In a network environment, authorized user may access data and information stored on other computers on the network. The capability of providing access to data and information on shared storage devices is an important feature of many networks.
Sharing software 
Users connected to a network may run application programs on remote computers.

Network classification

The following list presents categories used for classifying networks.

Connection method

Computer networks can be classified according to the hardware and software technology that is used to interconnect the individual devices in the network, such as optical fiber, Ethernet, wireless LAN, HomePNA, power line communication or G.hn.
Ethernet as it is defined by IEEE 802 utilizes various standards and mediums that enable communication between devices. Frequently deployed devices include hubs, switches, bridges, or routers. Wireless LAN technology is designed to connect devices without wiring. These devices use radio waves or infrared signals as a transmission medium. ITU-T G.hn technology uses existing home wiring (coaxial cable, phone lines and power lines) to create a high-speed (up to 1 Gigabit/s) local area network.

Wired technologies

  • Twisted pair wire is the most widely used medium for telecommunication. Twisted-pair cabling consist of copper wires that are twisted into pairs. Ordinary telephone wires consist of two insulated copper wires twisted into pairs. Computer networking cabling consist of 4 pairs of copper cabling that can be utilized for both voice and data transmission. The use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. The transmission speed ranges from 2 million bits per second to 100 million bits per second. Twisted pair cabling comes in two forms which are Unshielded Twisted Pair (UTP) and Shielded twisted-pair (STP) which are rated in categories which are manufactured in different increments for various scenarios.
  • Coaxial cable is widely used for cable television systems, office buildings, and other work-sites for local area networks. The cables consist of copper or aluminum wire wrapped with insulating layer typically of a flexible material with a high dielectric constant, all of which are surrounded by a conductive layer. The layers of insulation help minimize interference and distortion. Transmission speed range from 200 million to more than 500 million bits per second.
  • Optical fiber cable consists of one or more filaments of glass fiber wrapped in protective layers that carries a data by means of pulses of light. It transmits light which can travel over extended distances. Fiber-optic cables are not affected by electromagnetic radiation. Transmission speed may reach trillions of bits per second. The transmission speed of fiber optics is hundreds of times faster than for coaxial cables and thousands of times faster than a twisted-pair wire. A recent innovation in fiber-optic cable is the use of colored light. Instead of carrying one message in a stream of white light impulses, this technology can carry multiple signals in a single strand.

Wireless technologies

  • Terrestrial microwave – Terrestrial microwaves use Earth-based transmitter and receiver. The equipment looks similar to satellite dishes. Terrestrial microwaves use low-gigahertz range, which limits all communications to line-of-sight. Path between relay stations spaced approx, 48 km (30 miles) apart. Microwave antennas are usually placed on top of buildings, towers, hills, and mountain peaks.
  • Communications satellites – The satellites use microwave radio as their telecommunications medium which are not deflected by the Earth's atmosphere. The satellites are stationed in space, typically 35,400 km (22,200 miles) (for geosynchronous satellites) above the equator. These Earth-orbiting systems are capable of receiving and relaying voice, data, and TV signals.
  • Cellular and PCS systems – Use several radio communications technologies. The systems are divided to different geographic areas. Each area has a low-power transmitter or radio relay antenna device to relay calls from one area to the next area.
  • Wireless LANs – Wireless local area network use a high-frequency radio technology similar to digital cellular and a low-frequency radio technology. Wireless LANs use spread spectrum technology to enable communication between multiple devices in a limited area. An example of open-standards wireless radio-wave technology is IEEE.
  • Infrared communication , which can transmit signals between devices within small distances not more than 10 meters peer to peer or ( face to face ) without any body in the line of transmitting.

Scale